Avec le soutien de :

COLLOQUE GESTION DES EAUX SOUTERRAINES

Du 15 au 17 février 2023

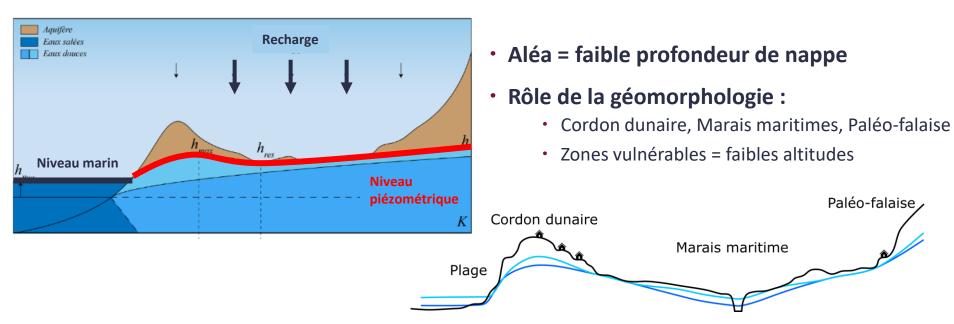
à l'ENSEGID - Bordeaux INP

Rivages Normands 2100:

Fédérer les acteurs académiques, institutionnels et territoriaux pour comprendre et s'adapter aux risques hydrogéologiques littoraux

M. Le Mesnil¹, A. Gauvain^{1,2}, S. de Foville¹, F. Gresselin³, F. Poirier^{1,4}, J-R. De Dreuzy¹, L. Aquilina¹

- ¹ Observatoire des Sciences de l'Univers de Rennes (OSUR), Université de Rennes, Rennes, France
- ² Institut Pierre-Simon Laplace (IPSL), Université Paris-Saclay, Gif-sur-Yvette, France
- ³ DREAL Normandie, Caen, France
- ⁴ Centre de Recherche Risques Vulnérabilités (CERREV), Université de Caen Normandie, Caen, France

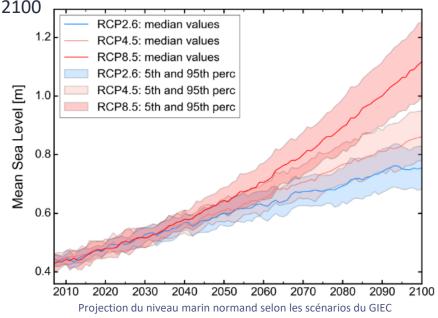


L'aléa « remontée de nappe »

- Niveau piézométrique soumis à deux facteurs de contrôle climatiques :
 - Recharge (alimentation par les précipitations)
 - Niveau marin (niveau de base, condition limite)

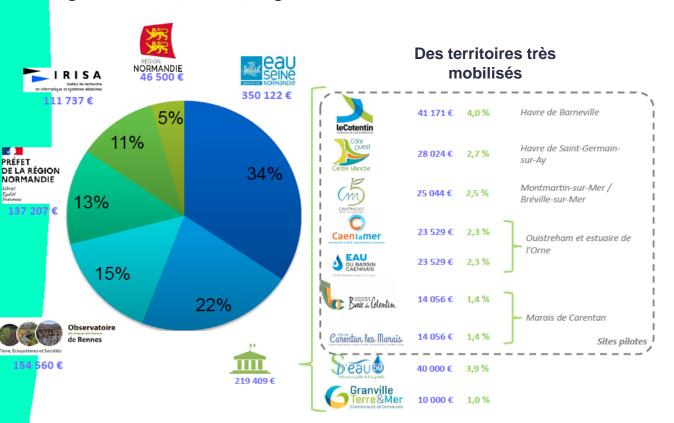
→ Quelle évolution des facteurs de contrôle dans un contexte de changement climatique ?

Evolution des facteurs de contrôle de l'aléa


- Evolution du niveau marin régional selon les prévisions climatiques :
 - RCP 2.6 : +0,3 m en 2100

RCP 8.5: +0,7 m en 2100

- Evolution du régime pluviométrique régional :
 - Augmentation de la fréquence et intensité des évènements pluvieux extrêmes
- Evolution du cordon dunaire :
 - Risque d'érosion lors des surverses


Surverse

→ L'évolution des facteurs de contrôle (climat + géomorphologie) tend à augmenter l'aléa remontée de nappe

Financements

Budget > 1 M€ Financé à 50 % par les institutions : Agence de l'Eau, DREAL, Région

Fort investissement des équipes de recherche

2 laboratoires (OSUR, IRISA) parmi les 3 premiers français en hydrologie et informatique

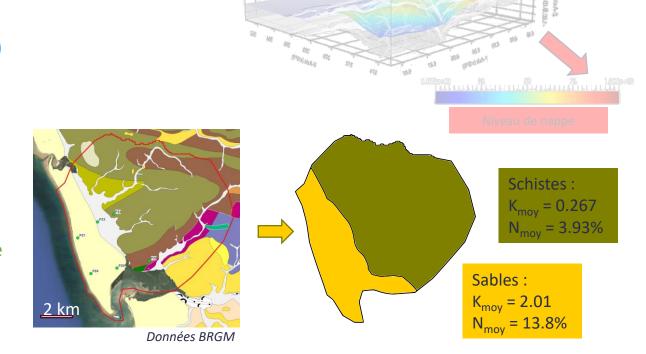
apportent 26 % du budget

Modélisation hydrogéologique

· Géométrie du modèle :

- Topographie (Modèle Numérique de Terrain)
- Epaisseur d'aquifère à définir

· Données d'entrée :


- Recharge (précipitations)
- Niveau marin

· Sortie de modèle :

Niveau de la nappe

· Paramètres du modèle :

- Conductivité hydraulique
- Porosité

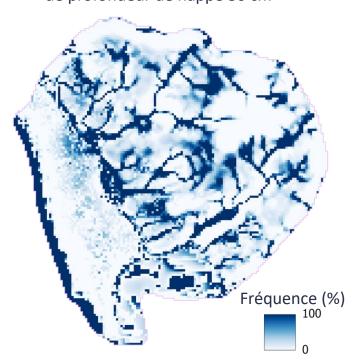
Indicateurs spatialisés de la vulnérabilité

Exemple : profondeur nappe < 30 cm

- Parcelle agricoles : portance sol, racines
- Zones urbaines : réseaux enterrés, fondations

Contrôle par l'hydrologie

· Forte vulnérabilité proche des cours d'eau

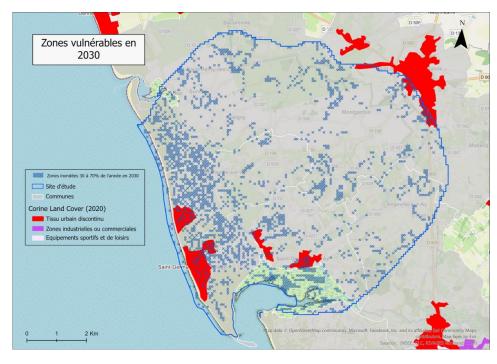

· Contrôle par la géomorphologie

- Zone basse littorale vulnérable
- Cordon dunaire protecteur
- Contreforts épargnés

Rôle de la géologie

- Zone littorale : sables/dunes plus perméables
- Zone continentale : calcaire/schistes

Fréquence de dépassement de profondeur de nappe 30 cm



Couplage aléa/enjeux

Recensement des enjeux du territoire

- Agriculture : Référentiel Parcellaire Graphique (RPG)
- Tissu urbain : Corine Land Cover
- Réseaux enterrés : Collectivités territoriales

Conclusions

Perspectives

- Modélisation de l'aléa
 - Identification des facteurs de contrôle
 - Instrumentation de sites, calibration
 - Modélisation à horizon 2100
- Couplage aux enjeux du territoire
 - Agriculture, urbain, bâti, réseaux
- Avancées scientifiques
 - Modélisation aquifères côtiers
 - Lien géomorphologie / vulnérabilité remontées de nappes
- Communication / sensibilisation
 - Réunions et ateliers avec collectivités

- Estimation économique des impacts
 - Bâtiments, voirie, réseaux
- Impacts socio-démographiques
- Extension aux bassins non jaugés
 - Calibration avec réseau hydrographique ou bassins voisins
- Analyse du biseau salé
 - Analyses géochimiques
 - Modélisation de la progression
- Co-construction de scénarios d'adaptation

Merci!

Photo DREAL Normandie